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Abstract 
Software cost Estimation is a process of predicting the 
effort needed to develop a software system in person-
months. It is a very critical process and the estimates made 
at the starting of the software are not accurate. Change in 
environment makes cost prediction more difficult. Here 
most commonly used model that has been successfully 
applied is compared with neural network techniques. 
Neural network gives better results than most often used 
COCOMO model. Here two types of ANN have been 
simulated. 
Keywords: Effort Estimation, Neural Network, 
COCOMO Model.  

1. Introduction 

In computer system projects most expensive 
component is the software and the cost of the 
software development depends heavily on the effort 
utilized in the project. Most of the cost estimation 
methods give estimation in terms of person-months. 
Accurate software cost estimates are critical to both 
developers and customers. They can be used for 
generating request for proposals, contract 
negotiations, scheduling, monitoring and control. 
Underestimating the costs may get the proposed 
software approved by management but later on, 
results in underdeveloped functions and poor quality, 
and failure to complete on time. Overestimating may 
result in too many resources committed to the project, 
or, during contract bidding, result in losing the 
contract. 
 
Software cost estimation involves the determination 
of the following estimates: 
 
• effort (usually in person-months) 
• project duration (in calendar time) 
• cost (in dollars) 
 

Most cost estimation models generate an effort 
estimate, which is then converted into the project 
duration and cost. This effort estimate can be 
converted into cost figure by calculating an average 
salary and multiplying it by the estimated effort 
required. 
 
Cost estimation methods can be broadly divided into 
two methods: algorithmic and non-algorithmic. Non-
algorithmic methods are: 
 

a) Analogy costing: This method requires one 
or more completed project of the same type 
and the estimation is done through reasoning 
by analogy using the actual costs of previous 
projects. 
 

b) Expert judgment: This method involves 
consulting one or more experts. The experts 
provide estimates using their own methods 
and experience. 
 

c) Bottom-up: In this approach, each 
component of the software system is 
separately estimated and the results 
aggregated to produce an estimate for the 
overall system. 
 

d) Top-down: This approach is the opposite of 
the bottom-up method. An overall cost 
estimate for the system is derived from 
global properties, using either algorithmic or 
non-algorithmic methods. The total cost can 
then be split up among the various 
components. This approach is more suitable 
for cost estimation at the early stage. 

 
Algorithmic models depend upon statistical analysis 
of historical data follow a computational approach 
and suggest the use of variables, different attributes 
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of the software project generally called cost drivers, 
to produce an estimate. Algorithmic model includes 
two most popular models used as follows: 
a) COCOMO Model 
b) Putnam’s Model and SLIM  
 
2. Literature Review 
 
2.1COCOMO Model 
 
COCOMO was proposed by Boehm in 1981,it  is a 
linear-least square regression model with Line of 
Code (LOC) as unit of measure for size. Boehm has 
proposed three levels of Cocomo namely Basic, 
Intermediate and Detailed. The general form of 
equation for estimating Effort, Productivity, and 
schedule with Basic cocomo is given as: 
 
Effort = a(KLOC)b    (1) 
Productivity = KLOC/Effort   (2) 
Schedule (months) = c(Effort)d             (3) 
 
The numeric value for the coefficients a, b, c and d 
appeared in these equations represents the three 
development modes namely Organic, Embedded and 
Semi-Detached. KLOC is lines of code in thousands. 
Intermediate Model computes effort as a function of 
program size and a set of Cost drivers. The equation 
for estimating software Effort for intermediate model 
slightly differs from Basic cocomo as: 

       15 
Effort = a (KLOC) b . Π EM i  

       i=1 
Where EM is effort adjustment factor and it is the 
product of 15 Effort Multipliers, a and b are 
parameters whose values are derived from three 
modes as discussed above. Detailed model include all 
characteristics of intermediate model with the 
difference that the impact of cost drivers is assessed 
for each and every phase of 
software engineering process. 
 
2.2 Neural Network  
 
A NN is generally depicted on the basis of learning 
rules, characteristics adopted by neuron (nodes) and 
net topology. It is composed of a large number of 
highly interconnected processing elements (neurons) 
working in unison to solve specific problems. A 
trained neural network can be thought of as an 
"expert" in the category of information it has been 
given to analyse. An artificial neuron is a device with 

many inputs and one output. The neuron has two 
modes of operation; the training mode and the using 
mode. In the training mode, the neuron can be trained 
to fire (or not), for particular input patterns. In the 
using mode, when a taught input pattern is detected at 
the input, its associated output becomes the current 
output. 
 

 
A Simple Neuron 

 
There are two types of artificial neural networks: feed 
forward network and feedback network. Feed-
forward ANNs allow signals to travel one way only; 
from input to output. There is no feedback (loops) i.e. 
the output of any layer does not affect that same 
layer. Feed-forward ANNs tend to be straight 
forward networks that associate inputs with outputs. 
Feedback networks can have signals travelling in 
both directions by introducing loops in the network. 
Feedback networks are very powerful and can get 
extremely complicated. Feedback networks are 
dynamic; their 'state' is changing continuously until 
they reach an equilibrium point. There are two types 
of learning methods: Supervised learning and 
unsupervised learning. Supervised 
learning incorporates an external teacher, so that each 
output unit is told what its desired response to input 
signals ought to be. During the learning process 
global information may be required. Paradigms of 
supervised learning include error-correction learning, 
reinforcement learning and stochastic learning. 
Unsupervised learning uses no external teacher and is 
based upon only local information. It is also referred 
to as self-organization, in the sense that it self-
organizes data presented to the network and detects 
their emergent collective properties. Paradigms of 
unsupervised learning are Hebbian learning and 
competitive learning. 
 
2.2.1Back Propagation Network: 

In order to train a neural network to perform some 
task, we must adjust the weights of each unit in such 
a way that the error between the desired output and 
the actual output is reduced. This process requires 
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that the neural network compute the error derivative 
of the weights (EW). The algorithm computes 
each EW by first computing the EA, the rate at which 
the error changes as the activity level of a unit is 
changed. For output units, the EA is simply the 
difference between the actual and the desired output. 
To compute the EA for a hidden unit in the layer just 
before the output layer, we first identify all the 
weights between that hidden unit and the output units 
to which it is connected. We then multiply those 
weights by the EAs of those output units and add the 
products. This sum equals the EA for the chosen 
hidden unit. After calculating all the EAs in the 
hidden layer just before the output layer, we can 
compute in like fashion the EAs for other layers, 
moving from layer to layer in a direction opposite to 
the way activities propagate through the network. 
This is what gives back propagation its name. Once 
the EA has been computed for a unit, it is straight 
forward to compute the EW for each incoming 
connection of the unit. The EW is the product of the 
EA and the activity through the incoming connection. 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig 1.Back Propagation Network 
 

 
2.2.2Cascade Correlation Learning 
 
Cascade-correlation (CC) is an architecture and 
generative, feed-forward, supervised learning 
Algorithm for artificial neural networks. Cascade-
Correlation begins with a minimal network, then 
automatically trains and adds new hidden units one 
by one creating a multi-layer structure. Cascade-
Correlation (CC) combines two ideas:  The first is the 
cascade architecture, in which hidden units are fixed 
which do not change once added. The second is the 

learning algorithm, which creates and installs the new 
hidden units. To install new hidden unit, the 
algorithm maximize the magnitude of the correlation 
between the new unit's output and the residual error 
signal of the network. Steps of the algorithms are 
following: 
Step 1: CC starts with a minimal network consisting 
only of an input and an output layer. Both layers are 
fully connected. 
Step 2: Train all the connections ending at an output 
unit with a usual learning algorithm until the error of 
the net no longer decreases. 
Step 3: Generate the so-called candidate units. Every 
candidate unit is connected with all input units and 
with all existing hidden units. Between the pool of 
candidate units and the output units there are no 
weights. 
Step 4: Try to maximize the correlation between the 
activation of the candidate units and the residual error 
of the net by training all the links leading to a 
candidate unit. Learning takes place with an ordinary 
learning algorithm. The training is stopped when the 
correlation scores no longer improves. 
Step 5: Choose the candidate unit with the maximum 
correlation, freeze its incoming weights and add it to 
the net. To change the candidate unit into a hidden 
unit, generate links between the selected unit and all 
the output units. Since the weights leading to the new 
hidden unit are frozen, a new permanent feature 
detector is obtained. Loop back to step 2. 
Step 6: This algorithm is repeated until the overall 
error of the net falls below a given value. 
 
 

 
Fig 2.Cascade Correlation Network 
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3. Experimental Setup 

3.1 Data 
 
Results in neural networks will be calculated by 
taking historical data [36], [37] of 50 projects which 
is divided into three parts: 30 projects data for 
training the network, 10 projects for validating the 
network and 10 projects for testing the network.  
 
4. Performance Criteria  
 
A. Mean Magnitude Relative Error (MMRE)  
 
MMRE is frequently used to evaluate the 
performance of any estimation technique. It measures 
the percentage of the absolute values of the relative 
errors, averaged over the N items in the "Test" set 
and can be written as                         

 
MMRE = ((1/N) (∑ |(Error )i| / Ei)) 

                             
Where N is total number of projects 

B.  Root Mean Square Error (RMSE)  
 
RMSE is another frequently used performance 
criteria which measures the difference between 
values predicted by a model or estimator and the 
values actually observed from the thing being 
modeled or estimated. It is just the square root of the 
mean square error, as shown in equation given below:  

                                
RMSE = (√((1/N) (∑((Error)i)

2)) ) 

                                
                         
Where N is total number of projects. 

 
 
 
 
 
 
 
 
 
 

5. Comparison of Different Cost 
Prediction Techniques 
 

 

Fig 3.Comparison of COCOMO Model, Back-
propagtion and Cascade Correlation learning 

algorithms 

 
5.1Error Prediction of Different Cost 
Prediction Techniques 
 
Here, error will be calculated of different Cost 
Prediction Techniques. 
To calculate the error following formule will be used: 
 
Error =  | E – E’  | 
Where 
Error is the output error, 
E is the actual effort, 
E’ is the estimated effort    
In this section 
E1 = | E - E’

coc | 
E2 = | E - E’back | 
E3 = | E - E’casc |  
 
Where  
E is the actual effort, 
E1 error of COCOMO Model  
E’coc is the estimated effort using COCOMO Model 
E2 error of Back-propagation learning algorithm 
E’back is the estimated effort using Back-propagation 
learning 
E3 error of Cascade Correlation learning algorithm   
E’casc is the estimated effort using Cascade 
Correlation learning. 
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Table1 
 

Performance 
Criteria 

COCOMO 
Model 

Back- 
propaga

tion 

Cascade 
Correlati

on 
RMSE 277.74 208.71 139.15 

MMRE 2.1557 1.1072 0.6228 

 

5.2Perforamnce Evaluation of COCOMO 
Model,Back-propagation and Cascade 
Correlation learning algorithms 

 
Following graphs shows the comparison using 
RMSE(Root Mean Square Error) of different cost 
prediction techniques. 

 

 

Figure 4 Comparison using RMSE 
Following graphs shows the comparison using 
MMRE(Mean Magnitude Relative Error) of different 
cost prediction techniques. 
 

 

Figure 5 Comparison using MMRE 
 

Comparison using RMSE and MMRE shows that 
Cascade Correlation is better than Back-propagtion 
and COCOMO Model. Accuracy is high in the 
Cascade  Correlation. 
 
6. Conclusion 
 
A reliable and accurate estimate of software 
development effort has always been a challenge for 
both the software industrial and academic 
communities. Here three most popular approaches 
were suggested to predict the software cost 
estimation. First COCOMO which has been already 
proven and successfully applied in the software cost 
estimation field and in second the Back-propagation 
learning algorithm and the third one is cascade-
correlation learning algorithm in Neural Network. 
After testing the network it is concluded that learning 
algorithms of neural network perform better then the 
COCOMO model and from learning algorithms 
Cascade correlation performs better then the Back-
propagation learning algorithm. It has less error 
values, so accuracy is high in Cascade Correlation. 
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