
International Journal of Engineering Sciences Paradigms and Researches (IJESPR)
(Vol. 13, Issue 01) and (Publishing Month: May 2014)

(An Indexed, Referred and Impact Factor Journal)
ISSN (Online): 2319-6564

www.ijesonline.com

IJESPR
www.ijesonline.com

13

Software CostSoftware CostSoftware CostSoftware Cost Estimation with Neural Network Estimation with Neural Network Estimation with Neural Network Estimation with Neural Network

TechniquesTechniquesTechniquesTechniques

Shilpa Malhotra1 and Yogita Gulati2

1M.Tech. Scholar, CSE Deptt., PIET, Samalkha, Haryana
er.shilpamalhotra25@gmail.com

2Astt. Prof., CSE Deptt., PIET, Samalkha, Haryana

Abstract
Software cost Estimation is a process of predicting the
effort needed to develop a software system in person-
months. It is a very critical process and the estimates made
at the starting of the software are not accurate. Change in
environment makes cost prediction more difficult. Here
most commonly used model that has been successfully
applied is compared with neural network techniques.
Neural network gives better results than most often used
COCOMO model. Here two types of ANN have been
simulated.
Keywords: Effort Estimation, Neural Network,
COCOMO Model.

1. Introduction

In computer system projects most expensive
component is the software and the cost of the
software development depends heavily on the effort
utilized in the project. Most of the cost estimation
methods give estimation in terms of person-months.
Accurate software cost estimates are critical to both
developers and customers. They can be used for
generating request for proposals, contract
negotiations, scheduling, monitoring and control.
Underestimating the costs may get the proposed
software approved by management but later on,
results in underdeveloped functions and poor quality,
and failure to complete on time. Overestimating may
result in too many resources committed to the project,
or, during contract bidding, result in losing the
contract.

Software cost estimation involves the determination
of the following estimates:

• effort (usually in person-months)
• project duration (in calendar time)
• cost (in dollars)

Most cost estimation models generate an effort
estimate, which is then converted into the project
duration and cost. This effort estimate can be
converted into cost figure by calculating an average
salary and multiplying it by the estimated effort
required.

Cost estimation methods can be broadly divided into
two methods: algorithmic and non-algorithmic. Non-
algorithmic methods are:

a) Analogy costing: This method requires one
or more completed project of the same type
and the estimation is done through reasoning
by analogy using the actual costs of previous
projects.

b) Expert judgment: This method involves
consulting one or more experts. The experts
provide estimates using their own methods
and experience.

c) Bottom-up: In this approach, each
component of the software system is
separately estimated and the results
aggregated to produce an estimate for the
overall system.

d) Top-down: This approach is the opposite of
the bottom-up method. An overall cost
estimate for the system is derived from
global properties, using either algorithmic or
non-algorithmic methods. The total cost can
then be split up among the various
components. This approach is more suitable
for cost estimation at the early stage.

Algorithmic models depend upon statistical analysis
of historical data follow a computational approach
and suggest the use of variables, different attributes

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)
(Vol. 13, Issue 01) and (Publishing Month: May 2014)

(An Indexed, Referred and Impact Factor Journal)
ISSN (Online): 2319-6564

www.ijesonline.com

IJESPR
www.ijesonline.com

14

of the software project generally called cost drivers,
to produce an estimate. Algorithmic model includes
two most popular models used as follows:
a) COCOMO Model
b) Putnam’s Model and SLIM

2. Literature Review

2.1COCOMO Model

COCOMO was proposed by Boehm in 1981,it is a
linear-least square regression model with Line of
Code (LOC) as unit of measure for size. Boehm has
proposed three levels of Cocomo namely Basic,
Intermediate and Detailed. The general form of
equation for estimating Effort, Productivity, and
schedule with Basic cocomo is given as:

Effort = a(KLOC)b (1)
Productivity = KLOC/Effort (2)
Schedule (months) = c(Effort)d (3)

The numeric value for the coefficients a, b, c and d
appeared in these equations represents the three
development modes namely Organic, Embedded and
Semi-Detached. KLOC is lines of code in thousands.
Intermediate Model computes effort as a function of
program size and a set of Cost drivers. The equation
for estimating software Effort for intermediate model
slightly differs from Basic cocomo as:

 15
Effort = a (KLOC) b . Π EM i

 i=1
Where EM is effort adjustment factor and it is the
product of 15 Effort Multipliers, a and b are
parameters whose values are derived from three
modes as discussed above. Detailed model include all
characteristics of intermediate model with the
difference that the impact of cost drivers is assessed
for each and every phase of
software engineering process.

2.2 Neural Network

A NN is generally depicted on the basis of learning
rules, characteristics adopted by neuron (nodes) and
net topology. It is composed of a large number of
highly interconnected processing elements (neurons)
working in unison to solve specific problems. A
trained neural network can be thought of as an
"expert" in the category of information it has been
given to analyse. An artificial neuron is a device with

many inputs and one output. The neuron has two
modes of operation; the training mode and the using
mode. In the training mode, the neuron can be trained
to fire (or not), for particular input patterns. In the
using mode, when a taught input pattern is detected at
the input, its associated output becomes the current
output.

A Simple Neuron

There are two types of artificial neural networks: feed
forward network and feedback network. Feed-
forward ANNs allow signals to travel one way only;
from input to output. There is no feedback (loops) i.e.
the output of any layer does not affect that same
layer. Feed-forward ANNs tend to be straight
forward networks that associate inputs with outputs.
Feedback networks can have signals travelling in
both directions by introducing loops in the network.
Feedback networks are very powerful and can get
extremely complicated. Feedback networks are
dynamic; their 'state' is changing continuously until
they reach an equilibrium point. There are two types
of learning methods: Supervised learning and
unsupervised learning. Supervised
learning incorporates an external teacher, so that each
output unit is told what its desired response to input
signals ought to be. During the learning process
global information may be required. Paradigms of
supervised learning include error-correction learning,
reinforcement learning and stochastic learning.
Unsupervised learning uses no external teacher and is
based upon only local information. It is also referred
to as self-organization, in the sense that it self-
organizes data presented to the network and detects
their emergent collective properties. Paradigms of
unsupervised learning are Hebbian learning and
competitive learning.

2.2.1Back Propagation Network:

In order to train a neural network to perform some
task, we must adjust the weights of each unit in such
a way that the error between the desired output and
the actual output is reduced. This process requires

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)
(Vol. 13, Issue 01) and (Publishing Month: May 2014)

(An Indexed, Referred and Impact Factor Journal)
ISSN (Online): 2319-6564

www.ijesonline.com

IJESPR
www.ijesonline.com

15

that the neural network compute the error derivative
of the weights (EW). The algorithm computes
each EW by first computing the EA, the rate at which
the error changes as the activity level of a unit is
changed. For output units, the EA is simply the
difference between the actual and the desired output.
To compute the EA for a hidden unit in the layer just
before the output layer, we first identify all the
weights between that hidden unit and the output units
to which it is connected. We then multiply those
weights by the EAs of those output units and add the
products. This sum equals the EA for the chosen
hidden unit. After calculating all the EAs in the
hidden layer just before the output layer, we can
compute in like fashion the EAs for other layers,
moving from layer to layer in a direction opposite to
the way activities propagate through the network.
This is what gives back propagation its name. Once
the EA has been computed for a unit, it is straight
forward to compute the EW for each incoming
connection of the unit. The EW is the product of the
EA and the activity through the incoming connection.

Fig 1.Back Propagation Network

2.2.2Cascade Correlation Learning

Cascade-correlation (CC) is an architecture and
generative, feed-forward, supervised learning
Algorithm for artificial neural networks. Cascade-
Correlation begins with a minimal network, then
automatically trains and adds new hidden units one
by one creating a multi-layer structure. Cascade-
Correlation (CC) combines two ideas: The first is the
cascade architecture, in which hidden units are fixed
which do not change once added. The second is the

learning algorithm, which creates and installs the new
hidden units. To install new hidden unit, the
algorithm maximize the magnitude of the correlation
between the new unit's output and the residual error
signal of the network. Steps of the algorithms are
following:
Step 1: CC starts with a minimal network consisting
only of an input and an output layer. Both layers are
fully connected.
Step 2: Train all the connections ending at an output
unit with a usual learning algorithm until the error of
the net no longer decreases.
Step 3: Generate the so-called candidate units. Every
candidate unit is connected with all input units and
with all existing hidden units. Between the pool of
candidate units and the output units there are no
weights.
Step 4: Try to maximize the correlation between the
activation of the candidate units and the residual error
of the net by training all the links leading to a
candidate unit. Learning takes place with an ordinary
learning algorithm. The training is stopped when the
correlation scores no longer improves.
Step 5: Choose the candidate unit with the maximum
correlation, freeze its incoming weights and add it to
the net. To change the candidate unit into a hidden
unit, generate links between the selected unit and all
the output units. Since the weights leading to the new
hidden unit are frozen, a new permanent feature
detector is obtained. Loop back to step 2.
Step 6: This algorithm is repeated until the overall
error of the net falls below a given value.

Fig 2.Cascade Correlation Network

Input
layer

xi

x1

x2

xn

1

2

i

n

Output
layer

1

2

k

l

yk

y1

y2

yl

Input signals

Error signals

wjk

Hidden
layer

wij

1

2

j

m

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)
(Vol. 13, Issue 01) and (Publishing Month: May 2014)

(An Indexed, Referred and Impact Factor Journal)
ISSN (Online): 2319-6564

www.ijesonline.com

IJESPR
www.ijesonline.com

16

3. Experimental Setup

3.1 Data

Results in neural networks will be calculated by
taking historical data [36], [37] of 50 projects which
is divided into three parts: 30 projects data for
training the network, 10 projects for validating the
network and 10 projects for testing the network.

4. Performance Criteria

A. Mean Magnitude Relative Error (MMRE)

MMRE is frequently used to evaluate the
performance of any estimation technique. It measures
the percentage of the absolute values of the relative
errors, averaged over the N items in the "Test" set
and can be written as

MMRE = ((1/N) (∑ |(Error)i| / Ei))

Where N is total number of projects

B. Root Mean Square Error (RMSE)

RMSE is another frequently used performance
criteria which measures the difference between
values predicted by a model or estimator and the
values actually observed from the thing being
modeled or estimated. It is just the square root of the
mean square error, as shown in equation given below:

RMSE = (√((1/N) (∑((Error)i)

2)))

Where N is total number of projects.

5. Comparison of Different Cost
Prediction Techniques

Fig 3.Comparison of COCOMO Model, Back-
propagtion and Cascade Correlation learning

algorithms

5.1Error Prediction of Different Cost
Prediction Techniques

Here, error will be calculated of different Cost
Prediction Techniques.
To calculate the error following formule will be used:

Error = | E – E’ |
Where
Error is the output error,
E is the actual effort,
E’ is the estimated effort
In this section
E1 = | E - E’

coc |
E2 = | E - E’back |
E3 = | E - E’casc |

Where
E is the actual effort,
E1 error of COCOMO Model
E’coc is the estimated effort using COCOMO Model
E2 error of Back-propagation learning algorithm
E’back is the estimated effort using Back-propagation
learning
E3 error of Cascade Correlation learning algorithm
E’casc is the estimated effort using Cascade
Correlation learning.

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)
(Vol. 13, Issue 01) and (Publishing Month: May 2014)

(An Indexed, Referred and Impact Factor Journal)
ISSN (Online): 2319-6564

www.ijesonline.com

IJESPR
www.ijesonline.com

17

Table1

Performance
Criteria

COCOMO
Model

Back-
propaga

tion

Cascade
Correlati

on
RMSE 277.74 208.71 139.15

MMRE 2.1557 1.1072 0.6228

5.2Perforamnce Evaluation of COCOMO
Model,Back-propagation and Cascade
Correlation learning algorithms

Following graphs shows the comparison using
RMSE(Root Mean Square Error) of different cost
prediction techniques.

Figure 4 Comparison using RMSE
Following graphs shows the comparison using
MMRE(Mean Magnitude Relative Error) of different
cost prediction techniques.

Figure 5 Comparison using MMRE

Comparison using RMSE and MMRE shows that
Cascade Correlation is better than Back-propagtion
and COCOMO Model. Accuracy is high in the
Cascade Correlation.

6. Conclusion

A reliable and accurate estimate of software
development effort has always been a challenge for
both the software industrial and academic
communities. Here three most popular approaches
were suggested to predict the software cost
estimation. First COCOMO which has been already
proven and successfully applied in the software cost
estimation field and in second the Back-propagation
learning algorithm and the third one is cascade-
correlation learning algorithm in Neural Network.
After testing the network it is concluded that learning
algorithms of neural network perform better then the
COCOMO model and from learning algorithms
Cascade correlation performs better then the Back-
propagation learning algorithm. It has less error
values, so accuracy is high in Cascade Correlation.

References

[1] Clark, B., Chulani, S. and Boehm, B. (1998),

“Calibrating the COCOMO II Post Architecture
Model,” International Conference on Software
Engineering, Apr. 1998.

[2] Christos Stergiou and Dimitrios Siganos, “Neural
Networks”

[3] Christopher M. Fraser (2000), “Neural Networks:
A Review from a Statistical Perspective”,
Hayward Statistics

[4] Nasser Tadayon, “Neural Network Approach for
Software Cost Estimation”, IEEE proceedings of
the International Conference on Information
Technology: Coding and Computing (ITCC ’
2005)

[5] S. Kanmani, J. Kathiravan, S. Senthil Kumar and
M. Shanmugam, “Neural Networks Based Effort
Estimation using Class Points for OO
Systems”,IEEE proceedings of the International
Conference on Computing: Theory and
Applications(ICCTA’2007)

[6] Ch. Satyananda Reddy, P. Sankara Rao, KVSVN
Raju, V. Valli Kumari, “A New Approach For
Estimating Software Effort Using RBFN
Network” , IJCSNS International Journal of
Computer Science and Network Security, VOL.8
No. 7, July 2008

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)
(Vol. 13, Issue 01) and (Publishing Month: May 2014)

(An Indexed, Referred and Impact Factor Journal)
ISSN (Online): 2319-6564

www.ijesonline.com

IJESPR
www.ijesonline.com

18

[7] Kiyoshi Kawaguchi,” Back propagation Learning
Algorithm”, Wikipedia.org, June 2000.

[8] Cascade Correlation Architecture and Learning
Algorithms for Neural Networks”,
Wikipedia.org, Nov. 1995

[9] Konstantinos Adamopoulos,” Application of
Back.

[10] P.V.G.D. Prasad Reddy and CH.V.M.K. Hari, A
Fine parameter tuning for COCOMO 81
software effort estimation using Particle swarm
optimization, A. Iman and H.O. Siew, Soft
Computing Approach for Software Cost
Estimation, Int.J. of Software Engineering, IJSE
Vol.3 No.1, pp.1-10, January 2010.

[11]Srinivasa Rao et al, Predictive and Stochastic
Approach for Software Effort Estimation, Int. J.
of Software Engineering, IJSE Vol. 6 No. 1
January 2013.

[12] Peram Subba Rao, Dr.K.Venkata Rao and
Dr.P.Suresh Varma, “A Novel Software Interval
Type - 2 Fuzzy Effort Estimation Model using S-
Fuzzy Controller With Mean and Standard
Deviation”, International Journal of Computer
Engineering & Technology (IJCET), Volume 4,
Issue 3, 2013, pp. 477 - 490, ISSN Print: 0976 –
6367, ISSN Online: 0976 – 6375.

[13]PourushBassi, “Neural Network-A Novel
Technique for Software Effort Estimation”,
International Journal of Computer Theory and
Engineering, Vol. 2, No. 1 February, 2010,
page:17 19.

[14] Roheet Bhatnagar, Vandana Bhattacharjee and
Mrinal Kanti Ghose, “Software Development
Effort Estimation –Neural Network Vs.
Regression Modeling Approach”, International
Journal of Engineering Science and Technology,
Vol. 2(7), 2010, page: 2950-2956.

